SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

- F Faraday's constant.
- J Mechanical equivalent of heat.
- N Avogadro's number.
- R {Gas constant per mol. Rydberg's constant.
- c Velocity of light in vacuo.
- e Electronic charge (charge equal and opposite in sign to that of an electron).
- g Acceleration due to gravity (standard value, if variation from standard is significant).
- h Planck's constant.
- k Boltzmann's constant.
- m Rest mass of an electron.

2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.

				-			•
Length .	•						•),
mean free	path	of mo	olecule	es	•	•	. j.
							. h
diameter, di							. d
diameter (_	_	. σ
radius .			_	-			. <i>r</i>
·	•	•		•	•	•	
Mass .	•		•	•	•	•	. m
molecular w	eight			•	•		. M
atomic weig							. A
atomic num	ber						. Z
gram-equiva	lent v	weight	: .		•		. Z, J
Ti							
Time	,		•	•	• ,.	•	. t
time interva		ecially	, halt-	or m	ean-li	te	. τ
frequency	•	•	•	•	•	•	. <i>V</i>
Velocity .	_						v; c , (u, v, w)
of ions	•	•	•	•	•	•	. u (with subscript)
angular	•	•	•	•	•	•	. ω (with subscript)
Acceleration	•	•	•	•	•	•	. fa
due to gravi	tr (20	·	اماط	•	•	•	
due to gravi	ty (as	valla	ibiej	•	•	•	• g
Force .							. F, (X, Y, Z)
Moment of ine	rtia						\cdot I
Pressure.							$p_{\bullet}P$
especially os							\vec{H}
		-	-	•	-	-	
Volume .	•	•					_
Density .							$\rho \ldots d$
Compressibility	y	•	•	•	•	•	. кК

Viscosity . Fluidity			•			•	$\phi \phi$
Surface area . Angle of contact						•	$_{ heta}^{A}\ldots$ s
Surface tension Parachor .		•	•	•	•	•	$\gamma \dots \sigma$ $[P]$
Surface concentra	tion ex	cess	•	•	•	•	Γ
Number of mols Concentration, mo	ol fracti other t		•			:	n N, x c, C
Solubility . Diffusion coefficient		•	:	•	•	:	s D
Chemical equilibri solubility produ			_	-		ts)	K K L
Velocity constant Number of molecu	of cher llar col	nical 1 lisions	eaction per s	on econd	•	•	$\stackrel{k}{Z}$
Partition function		•	•	•	•	٠	f
Efficiency, of any Wave function	process.	•		•		•	$\overset{oldsymbol{\eta}}{oldsymbol{\psi}}$
		Heat	and T	[herm	odyna	mic:	s.
Temperature, on a			, (°K)	•		•	T
on on the Thermal conductive	other so vity	ales	•	•	•	•	$rac{ heta}{k}$ t
Energy (general sy						•	E
Work done by or Heat entering a sy				•	•	•	$w \dots W$
Specific heat .		•				•	c_p and c_v C_p and C
molecular heat Ratio of specific h	· oots	•	•	•	•	•	
Latent heat, per g		•	•	•	•		l
per n	nol	•	•		•	•	L
Intrinsic energy	•				•	•	$U \dots E$
Enthalpy, total he Entropy.					•	•	H S
Free energy (Helm	nholtz)				•	•	$A \dots F$
Thermodynamic jenergy (G. N.	DO COLLET	ui, ui	bbs 1	unctio	on, fr	ee	G
			•	•	•	•	i
Vapour pressure c			•	•	•	•	-
Chemical potentia Activity	ı .	•		•	•	•	$\frac{\mu}{a}$
coefficient (for r		oncent	ratio	1)	•		f
Osmotic coefficien Van 't Hoff's facto		•	•	•	•	•	$\stackrel{g}{i}$
	•	•				•	•
			El	ectrici	y.		
Quantity of electric especially electric		charm	•	•	•		Q e
Potential (differen		·	•	•	:	•	6 17
Volta potential	· ·		•	•	•	• ,) ^v
electrokinetic po especially electro			· of w	oltaic	celle	•	\mathcal{E}
Potential gradient	, in ele	ctric fi	eld			•	X
Electronic exit wo	rk func	tion	• .	•	•	•	φ

	_
Current	. 1
Resistance	. R
specific resistance	$\cdot \rho \cdot \cdot \cdot r$
specific conductance	. κσ
Inductance, self	. L
mutual	. <i>M</i>
Electrostatic capacity	. <i>C</i>
Dielectric constant	. €
Dipole moment	• μ
•	•
Electrochemistry.	
Degree of electrolytic dissociation	~
	. α
	\vdots I
Ionic strength	. 1
Equivalent conductance	. Λ
equivalent ionic conductance, "mobility"	. l (with subscript)
Transport number	. T (with subscript)
	n (with subscript)
	• • •
Single electrode potential	e (with subscript),
	E (with subscript)
Electrolytic polarisation, overvoltage	\cdot η \dots π
Magnetism.	
Magnetic field strength	. H
	= -
flux	· •
permeability	. μ
susceptibility—volume	. к
mass .	· X . M
moment	
induction	. B
Optics.	
Wave length	. λ
Wave number	. ν
Intensity of light	. I
Refractive index	. n (with subscript)
Refractive mass.	$\dots \mu$ (with subscript)
specific refraction	. r (with subscript)
molecular refraction	. [R] (with subscript)
Molar extinction coefficient	. €
Angle of (optical) rotation	. α
specific rotation	. [α]
Specific magnetic rotation	. ω
3. To be Printed in Roman, v	vhen not Greek.
(a) Examples of Mathematical Const	anis ana Operaiors.
Base of natural logarithms	. е
Ratio of circumference to diameter	. π
Differential	. d
	. ∂
partial	. δ
Increment	. δ
very small increment	. δ . Σ
Sum	. 2 . П
Product	. п . f ф
Function	. 1 Ф

(b) Examples of single-letter abbreviations.

*Ampère	in s	ub-un	its)	•	•				a.
Volt	•	•	•		•	•			v.
Ohm	•			•	•		•	•	Ω .
Watt	•						•		w.
Farad	•		•				•		F.
Henry	•	•	•	•	•	•	•	•	н.
Centigra	de								c.
Fahrenh	eit	•							F.
Kelvin	•	•		•	•	•		•	ĸ.
Ångstror	n unit	;							Ą.
micron	•	•	•		•				μ.
metre	•	•		•	•		•	•	m.
gram									g.
litre	•		•	•	•	•	•	•	I.
Röntgen	unit	•					•		r.
†Normal				•	•				N.
†Molar (d	concer	ntratio	n)	•	•				М.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

M	mega-	$10^6 \times$
k	kilo-	$10^3 \times$
d	deci-	$10^{-1} \times$
c	centi-	$10^{-2} \times$
m	milli-	$10^{-3} \times$
μ	micro-	$10^{-6} \times$

e.g., $M\Omega.$ denotes megohm; kw., kilowatt; and $\mu g.,$ microgram. The use of μμ. instead of mμ. to denote 10^{-7} cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities

	(a) Subscripts to symbols for quantities.
I, II 1, 2 A B . i	sespecially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.
+,	referring to a positive or negative ion, or to a positive or negative electrode.
p, v, T	indicating constant pressure, volume, and temperature respectively.
q	indicating adiabatic conditions.
v	indicating that no work is performed.
p, c, a	with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.
G, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
c	referring to the critical state or indicating a critical value.
0	referring to a standard state, or indicating limiting value at infinite dilution.

^{*} E.g. "ma." for "milliampère"; but "amp." is preferred for "ampère."
† Separated by a hyphen (and no full stop) from a chemical formula which follows it.

with symbols for optical properties, referring to a particular wavelength.

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

(b) Other modifying signs.

- o as right-hand superscript to symbol (particularly to a symbol for a general thermodynamic function—see p. 718), referring to a standard state.
- [] enclosing formula of chemical substance, indicating its molar concentration.
- { } enclosing formula of chemical substance, indicating its molar activity.

In crystallography it is recommended that:

Millerian indices be enclosed in parentheses, ();

Laue indices be unenclosed;

Indices of a plane family be enclosed in braces, { };

Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

upper l ft mass number of atom. lower left nuclear charge of atom.

lower right number of atoms in molecule.

e.g., ${}_{2}^{7}\text{Li}$; ${}_{1}^{2}\text{H}_{2}$ (= D₂).

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

- A free energy—Helmholtz; atomic weight; surface area.
- A. Ångstrom unit.
- a activity; (acceleration).
- a. ampère, in sub-units-see footnote, p. 988.
- B magnetic induction.
- C concentration; electrostatic capacity. with subscript: molecular heat capacity.
- c. Centigrade.
- velocity of light in vacuo.
- c velocity; concentration.

 with subscript: specific heat.
- D diffusion coefficient.
- d diameter; distance; (density).
- d differential.
- a partial differential.
- E energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.
 - with subscript: single electrode potential.
- e electronic charge—charge equal and opposite in sign to that of an electron. quantity of electricity, especially electrostatic charge. with subscript: single electrode potential.

```
е
    base of natural logarithms.
F
    Faraday's constant.
F
    force; (free energy—Helmholtz).
    farad; Fahrenheit.
F.
    acceleration; activity coefficient, for molar concentration; partition
f
      function.
f
    function.
G
    thermodynamic potential, Gibbs function, free energy—G. N. Lewis.
    acceleration due to gravity, standard value.
\boldsymbol{g}
    acceleration due to gravity, as a variable; osmotic coefficient.
g
g.
Η
    enthalpy, total heat, heat content; magnetic field strength.
H.
    henry.
    Planck's constant.
h
h
    height.
I
    moment of inertia; ionic strength; electric current; intensity of light.
    vapour pressure constant; van 't Hoff's factor.
J
    mechanical equivalent of heat.
J
K
    gram-equivalent weight.
    chemical equilibrium constant; (compressibility).
    K, solubility product.
к.
    Kelvin.
    Boltzmann's constant.
k
    thermal conductivity; velocity constant of chemical reaction.
k
L
    latent heat per mol; self inductance; (solubility product).
    latent heat per g.; length; mean free path of molecules.
    with subscript: equivalent ionic conductance, "mobility".
1.
    litre.
M
    molecular weight; mutual inductance; magnetic moment.
    molar concentration.
m rest mass of an electron.
m mass.
m. metre.
N
    Avogadro's number.
N
    mol fraction.
N. normal concentration.
    number of mols.
    with subscript: (transport number).
    with subscript: refractive index.
P
    pressure.
[P] parachor.
    pressure.
Q
    quantity of electricity.
    heat entering a system.
R
    gas constant per mol; Rydberg's constant.
R
    electrical resistance.
[R] with subscript: molecular refraction.
    radius; (specific resistance).
    with subscript: specific refraction.
r.
    Röntgen unit.
S
    entropy.
    solubility; (surface area).
    temperature, on absolute Kelvin scale.
    with subscript: transport number.
    time; (temperature—not on absolute scale).
U
    intrinsic energy.
    velocity component.
    with subscript: velocity of ions.
```

volume; potential, potential difference, including Volta potential.

- volt. v.
- volume; velocity; velocity component.
- (work done by or on a system).
- w. watt.
- work done by or on a system; velocity component.
- \boldsymbol{X} force component; potential gradient in electric field.
- mol fraction.
- Y force component.
- force component; g.-equivalent weight; number of molecular collisions per second; atomic number.
- valency of an ion. z
- degree of electrolytic dissociation; angle of optical rotation. α
- [a] specific optical rotation.
- surface concentration excess.
- ratio of specific heats; surface tension.
- increment.
- very small increment.
- dielectric constant; molar extinction coefficient.
- electrokinetic potential.
- efficiency of any process; viscosity; electrolytic polarisation, overvoltage.
- angle of contact; temperature—not on absolute scale.
- compressibility; specific conductance; magnetic susceptibility—volume.
- equivalent conductance.
- wave length.
- chemical potential; dipole moment; magnetic permeability. μ with subscript: (refractive index).
- μ. micron.
- frequency; wave number.
- pressure, especially osmotic pressure. Π
- (electrolytic polarisation, overvoltage).
- ratio of circumference to diameter. π
- density; specific resistance.
- sum.
- diameter of molecules; (surface tension); (specific conductance).
- time interval, especially half or mean life.
- fluidity; electronic exit work function; magnetic flux.
- function. Φ
- magnetic susceptibility—mass.
- χ ψ wave function.
- Ω. ohm.
- angular velocity; specific magnetic rotation.